Digital Thread and Industry 4.0

Dallas, TX
November 28th, 2017
Agenda

• Lockheed Martin Overview

• The Digital Thread –
 – Phase 1 - The Beginning of the Digital Thread.
 – Phase 2 - Automation
 – Phase 3 - Taking it to the streets
 – Phase 4 - Tying the knot in the Digital Thread

• Phase 5 - Industry 4.0
Lockheed Martin Corporation

AERONAUTICS
• Tactical fighters
• Tactical and strategic airlift
• Advanced Development

MISSILES & FIRE CONTROL
• Air and missile defense
• Fire control and situational awareness
• Nuclear systems and solutions

ROTARY AND MISSION SYSTEMS
• Maritime Solutions
• Radar and Surveillance Systems
• Aviation Systems and Rotorcraft Platforms
• Training and Logistics Solution

SPACE SYSTEMS
• Surveillance and navigation
• Global communications
• Human space flight
• Strategic and defensive systems

Copyright 2017, Lockheed Martin Corporation. All Rights Reserved
Lockheed Martin Aeronautics

- 22,000+ employees
- Ten locations
- Global partnerships
Production Lines

F-35

C-130J

F-16
Sustainment Operations

F-22

F-16

C-130

C-5

P-3

U-2
Phase 1 - The Digital Thread Beginning

Solid Models for Engineering and Tooling Began the Digital Thread
Early Benefits and Lessons Learned

Benefits of the Digital Thread

• Direct connection to suppliers and a common 3D digital design database
• Seamless Production and Sustainment access to all released engineering.
• Use of 3D models for integration and interfaces.
• Huge reductions in engineering and tooling drawing changes from 3D exact solids.

Lessons Learned

• Systems engineering required for data strategy and IT architecture
• Standardization is important - Engineering, Planning, Tooling, Specifications, etc.
• Static graphics are expensive to maintain for developmental programs
• Focus on recurring downstream consumption and configuration management.
Digital Thread – Future Vision

Information seamlessly available from all parts of the lifecycle to all parts of the lifecycle
Phase 2 - Automation is Enabled by the Digital Thread

Data is Constructed to Enable Automation
Phase 3 - Taking it to the Streets

Engineering Data is Projected onto the Work Surfaces
Additive Manufacturing Development
Augmented Reality

Guided Work Instructions with Voice Controls (After)

Operator’s view in glasses
Remote Augmented Reality

“Technician” view on Tablet

“Expert” view at Desktop Computer

“Technician” view on Tablet

“Expert” view at Desktop Computer
Phase 4 – Tying the Knot in the Digital Thread
Non-Contact Metrology Applications Development

- Fastener Flushness Inspection
- Detail Part Validation
- Virtual Opening Verification
- Seam Validation
- Coating Thickness Inspection
Digital Thread Phases 1-4 Summary

- Significant savings from the use of 3D solid models for BTP (build to package(models, drawings, tooling, work instructions) development.
- Consumption of 3D data (drawings) by production still problematic. Optical/laser projection technologies continue to develop.
 - Is AR an opportunity?
- Additive manufacturing for temporary tooling is proven. AM for support equipment and non critical applications maturing. Primary structure applications perhaps a decade away.
- Automation opportunities depend on the volume of production, technology, and economic ground rules. Rise of the robots?
- Validation of as-designed to as-built configuration is now possible and will soon be standard practice for at least first article parts, tools, and assemblies if not for real time monitoring of Production and Sustainment.
Phase 5 – Industry 4.0
The Revolution of Data
Data is Often Functionally Silo’d and Not Well Integrated for Enterprise Accessibility and Analysis
The BOM is the Golden Thread
The Connected Enterprise Enables Automated Metrics, Financial Reporting, Data Analytics, Integration with Factory Equipment, and Real Time Management Visibility
The Future of the Digital Thread

• Advance the Digital Thread for Product Development, Manufacturing, and Sustainment
 – Digital Twin, Automated Analysis, Robotics, Simulation, Augmented Reality, etc.

• Apply systems engineering philosophy to integrate tools and seamlessly connect the enterprise systems (PLM, MES, SAP, Sustainment) – BOM is the Golden Thread

• Embrace Industry 4.0 –
 – Descriptive Analytics - Desktop access to task level/program level performance that crosses functional boundaries and early warning alarm systems for future problems.

How Will We Design, Build, Sustain, and Manage the Starship Enterprise?